屋子里,徐云正在侃侃而谈:
“艾萨克先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用e^x=1+x+x^22!+x^33!+……+x^nn!+……来计算。”
说着徐云拿起笔,在纸上写下了一行字:
当n=0时,e^x>1。
“艾萨克先生,这里是从x^0开始的,用0作为起点讨论比较方便,您可以理解吧?”
小牛点了点头,示意自己明白。
随后徐云继续写道:
假设当n=k时结论成立,即e^x>1+x1!+x^22!+x^33!+……+x^kk!(x>0)
则e^x-[1+x1!+x^22!+x^33!+……+x^kk!]>0
那么当n=k+1时,令函数f(k+1)=e^x-[1+x1!+x^22!+x^33!+……+x^(k+1)(k+1)]!(x>0)
接着徐云在f(k+1)上画了个圈,问道:
“艾萨克先生,您对导数有了解么?”
小牛继续点了点头,言简意赅的蹦出两个字:
“了解。”
学过数学的朋友应该都知道。
导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。
眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。
在求导方面,小牛的介入点是瞬时速度。
速度=路程x时间,这是小学生都知道的公式,但瞬时速度怎么办
比如说知道路程s=t^2,那么t=2的时候,瞬时速度v是多少呢
数学家的思维,就是将没学过的问题转化成学过的问题。
于是牛顿想了一个很聪明的办法:
取一个”
很短”
的时间段△t,先算算t=2到t=2+△t这个时间段内,平均速度是多少。
v=st=(4△t+△t^2)△t=4+△t。
当△t越来越小,2+△t就越来越接近2,时间段就越来越窄。
△t越来越接近0时,那么平均速度就越来越接近瞬时速度。
如果△t小到了0,平均速度4+△t就变成了瞬时速度4。
当然了。
后来贝克莱发现了这个方法的一些逻辑问题,也就是△t到底是不是0。
如果是0,那么计算速度的时候怎么能用△t做分母呢?鲜为人...咳咳,小学生也知道0不能做除数。
到如果不是0,4+△t就永远变不成4,平均速度永远变不成瞬时速度。
按照现代微积分的观念,贝克莱是在质疑lim△t→0是否等价于△t=0。
这个问题的本质实际上是在对初生微积分的一种拷问,用“无限细分”
一个来自农村的女孩,通过自己的努力来到梦想中的大学,却发现现实和自己想象的完全不一样。但是再多的风雨也击不垮自己心中的小太阳,虞以晴不忘初心,用自己的真诚温暖着身边的人,最终收获了友情和爱情。各位友友,快来阅文旗下网站阅读我的更多作品吧!...
专栏下一本七零小知青求收藏支持本文文案林窈是老林家从乡下领回来的闺女。原本以为领回来就是给找份工,到时间再给找个人嫁了也就完事了。却没想到小姑娘漂亮精致得让人窒息。还好看着天真好拿捏。可...
...
无CP吓死一个少一个,全死?我封神扑街网文作者苏酥被卷入一场无限生存游戏中。副本里蕴含了无数因怨念而衍生出来的‘怪物’,杀机四伏。最初,许多玩家都被苏酥人畜无害的外表给诓骗了,以为她纯良可欺。但当苏酥面不改色的解决掉这些‘怪物’后,腹黑属性暴露的她,彻底在游戏世界杀疯了。直到后来,游戏世界里流传着这样一句话惹谁都别惹萝莉。请一定要相信它!这绝对不是妄言!...
穿越成败光家产的败家子,一穷二白连饭都吃不上。眼看老婆小姨子就要抵给他人,云泽只得是斗狗友,战狐朋。可好不容易刚将小日子过好,乱世又来临。为在乱世生存,他只好开始积蓄力量。战蛮夷,驱外族,打碎腐朽王朝,创建一个新的盛世。...
看看孩子的预收吧一个倒霉蛋决定在网游文养老文案见最下嘉慈平平无奇女装三坑种草姬,天天姐姐妹妹挂在嘴边,但最想做的事却是给每个流浪在外的野生帅哥一个温暖港湾。所谓闷到极致就是骚,说的就是他这样...